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Predicates and Quantifiers 

Propositional logic cannot adequately express the meaning of all statements in 

mathematics and in natural language. For example, suppose that we know that  

“Every computer connected to the university network is functioning properly.” 

No rules of propositional logic allow us to conclude the truth of the statement 

“MATH3 is functioning properly,” 

Where MATH3 is one of the computers connected to the university network. Likewise, 

we cannot use the rules of propositional logic to conclude from the statement 

“CS2 is under attack by an intruder,” 

where CS2 is a computer on the university network, to conclude the truth of  

“There is a computer on the university network that is under attack by an 

intruder.” 

In this section we will introduce a more powerful type of logic called predicate logic. 

We will see how predicate logic can be used to express the meaning of a wide range of 

statements in mathematics and computer science in ways that permit us to reason and 

explore relationships between objects. To understand predicate logic, we first need to 

introduce the concept of a predicate. Afterward, we will introduce the notion of 

quantifiers, which enable us to reason with statements that assert that a certain property 

holds for all objects of a certain type and with statements that assert the existence of an 

object with a particular property. 
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Predicates 

Statements involving variables, such as 

“x > 3,” “x = y + 3,” “x + y = z,” 

and 

“computer x is under attack by an intruder,” 

and 

“computer x is functioning properly,” 

are often found in mathematical assertions, in computer programs, and in system 

specifications. 

These statements are neither true nor false when the values of the variables are not 

specified. In this section, we will discuss the ways that propositions can be produced 

from such statements. 

The statement ―x is greater than 3‖ has two parts. The first part, the variable x, is the 

subject of the statement. The second part—the predicate, ―is greater than 3‖—refers to 

a property that the subject of the statement can have. We can denote the statement ―x is 

greater than 3‖ by P(x), where P denotes the predicate ―is greater than 3‖ and x is the 

variable. The statement P(x) is also said to be the value of the propositional function P 

at x. Once a value has been assigned to the variable x, the statement P(x) becomes a 

proposition and has a truth value. Consider Examples 1 and 2. 

EXAMPLE 1 Let P(x) denote the statement ―x > 3.‖ What are the truth values of P(4) 

and P(2)? 

Solution: We obtain the statement P(4) by setting x = 4 in the statement ―x > 3.‖ 

Hence, P(4), which is the statement ―4 > 3,‖ is true. However, P(2), which is the 

statement ―2 > 3,‖ is false. 
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EXAMPLE 2 Let A(x) denote the statement ―Computer x is under attack by an 

intruder.‖ Suppose that of the computers on campus, only CS2 and MATH1 are 

currently under attack by intruders. What are truth values of A(CS1), A(CS2), and 

A(MATH1)? 

Solution: We obtain the statement A(CS1) by setting x = CS1 in the statement 

―Computer x is under attack by an intruder.‖ Because CS1 is not on the list of 

computers currently under attack, we conclude that A(CS1) is false. Similarly, because 

CS2 and MATH1 are on the list of computers under attack, we know that A(CS2) and 

A(MATH1) are true. 

We can also have statements that involve more than one variable. For instance, consider 

the statement ―x = y + 3.” We can denote this statement by Q(x, y), where x and y are 

variables and Q is the predicate. When values are assigned to the variables x and y, the 

statement Q(x, y) has a truth value. 

EXAMPLE 3 Let Q(x, y) denote the statement ―x = y + 3.‖ What are the truth values of 

the propositions Q(1, 2) and Q(3, 0)? 

Solution: To obtain Q(1, 2), set x = 1 and y = 2 in the statement Q(x, y). Hence, Q(1, 2) 

is the statement ―1 = 2 + 3,‖ which is false. The statement Q(3, 0) is the proposition ―3 

= 0 + 3,‖ which is true. 

EXAMPLE 4 Let A(c, n) denote the statement ―Computer c is connected to network 

n,‖ where c is a variable representing a computer and n is a variable representing a 

network. Suppose that the computer MATH1 is connected to network CAMPUS2, but 

not to network CAMPUS1. What are the values of A(MATH1, CAMPUS1) and 

A(MATH1, CAMPUS2)? 

Solution: Because MATH1 is not connected to the CAMPUS1 network, we see that 

A(MATH1,CAMPUS1) is false. However, because MATH1 is connected to the 

CAMPUS2 network, we see that A(MATH1, CAMPUS2) is true. 
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Similarly, we can let R(x, y, z) denote the statement`‗ x + y = z.‖ When values are 

assigned to the variables x, y, and z, this statement has a truth value. 

EXAMPLE 5 What are the truth values of the propositions R(1, 2, 3) and R(0, 0, 1)? 

Solution: The proposition R(1, 2, 3) is obtained by setting x = 1, y = 2, and z = 3 in the 

statement R(x, y, z). We see that R(1, 2, 3) is the statement ―1 + 2 = 3,‖ which is true. 

Also note that R(0, 0, 1), which is the statement ―0 + 0 = 1,‖ is false. 

In general, a statement involving the n variables x1, x2, . . . , xn can be denoted by P(x1, 

x2, . . . , xn). 

A statement of the form P(x1, x2, . . . , xn) is the value of the propositional function P at 

the n-tuple (x1, x2, . . . , xn), and P is also called an n-place predicate or a n-ary predicate. 

Propositional functions occur in computer programs, as Example 6 demonstrates. 

EXAMPLE 6 Consider the statement if x > 0 then x := x + 1. 

When this statement is encountered in a program, the value of the variable x at that 

point in the execution of the program is inserted into P(x), which is ―x > 0.‖ If P(x) is 

true for this value of x, the assignment statement x := x + 1 is executed, so the value of 

x is increased by 1. If P(x) is false for this value of x, the assignment statement is not 

executed, so the value of x is not changed. 

 

PRECONDITIONS AND POSTCONDITIONS Predicates are also used to establish 

the correctness of computer programs, that is, to show that computer programs always 

produce the desired output when given valid input. The statements that describe valid 

input are known as preconditions and the conditions that the output should satisfy 

when the program has run are known as postconditions. As Example 7 illustrates, we 

use predicates to describe both preconditions and postconditions.  
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EXAMPLE 7 Consider the following program, designed to interchange the values of 

two variables x and y. 

temp := x 

x := y 

y := temp 

Find predicates that we can use as the precondition and the postcondition to verify the 

correctness of this program. Then explain how to use them to verify that for all valid 

input the program does what is intended. 

Solution: For the precondition, we need to express that x and y have particular values 

before we run the program. So, for this precondition we can use the predicate P(x, y), 

where P(x, y) is the statement ―x = a and y = b,‖ where a and b are the values of x and y 

before we run the program. Because we want to verify that the program swaps the 

values of x and y for all input values, for the postcondition we can use Q(x, y), where 

Q(x, y) is the statement ―x = b and y = a.‖ 

To verify that the program always does what it is supposed to do, suppose that the 

precondition P(x, y) holds. That is, we suppose that the statement ―x = a and y = b‖ is 

true. This means that x = a and y = b. The first step of the program, temp := x, assigns 

the value of x to the variable temp, so after this step we know that x = a, temp = a, and 

y = b. After the second step of the program, x := y, we know that x = b, temp = a, and y 

= b. Finally, after the third step, we know that x = b, temp = a, and y = a. 

Consequently, after this program is run, the postcondition Q(x, y) holds, that is, the 

statement ―x = b and y = a‖ is true. 
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Quantifiers 

When the variables in a propositional function are assigned values, the resulting 

statement becomes a proposition with a certain truth value. However, there is another 

important way, called quantification, to create a proposition from a propositional 

function. Quantification expresses the extent to which a predicate is true over a range of 

elements. In English, the words all, some, many, none, and few are used in 

quantifications. We will focus on two types of quantification here: universal 

quantification, which tells us that a predicate is true for every element under 

consideration, and existential quantification, which tells us that there is one or more 

element under consideration for which the predicate is true. The area of logic that deals 

with predicates and quantifiers is called the predicate calculus. 

 

THE UNIVERSAL QUANTIFIER Many mathematical statements assert that a 

property is true for all values of a variable in a particular domain, called the domain of 

discourse (or the universe of discourse), often just referred to as the domain. Such a 

statement is expressed using universal quantification. The universal quantification of 

P(x) for a particular domain is the proposition that asserts that P(x) is true for all values 

of x in this domain. Note that the domain specifies the possible values of the variable x. 

The meaning of the universal quantification of P(x) changes when we change the 

domain. The domain must always be specified when a universal quantifier is used; 

without it, the universal quantification of a statement is not defined. 
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The meaning of the universal quantifier is summarized in the first row of Table 1.  

 

EXAMPLE 8 Let P(x) be the statement ―x + 1 > x.‖ What is the truth value of the 

quantification ∀x P(x), where the domain consists of all real numbers? 

Solution: Because P(x) is true for all real numbers x, the quantification ∀x P(x) is true. 

Besides ―for all‖ and ―for every,‖ universal quantification can be expressed in many 

other ways, including ―all of,‖ ―for each,‖ ―given any,‖ ―for arbitrary,‖ ―for each,‖ and 

―for any.‖ 

Remark: It is best to avoid using ―for any x‖ because it is often ambiguous as to 

whether ―any‖ means ―every‖ or ―some.‖ In some cases, ―any‖ is unambiguous, such as 

when it is used in negatives, for example, ―there is not any reason to avoid studying.‖ 

A statement ∀x P(x) is false, where P(x) is a propositional function, if and only if P(x) 

is not always true when x is in the domain. One way to show that P(x) is not always true 

when x is in the domain is to find a counterexample to the statement ∀x P(x). Note that 

a single counterexample is all we need to establish that ∀x P(x) is false. Example 9 

illustrates how counterexamples are used. 
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EXAMPLE 9 Let Q(x) be the statement ―x < 2.‖ What is the truth value of the 

quantification ∀x Q(x), where the domain consists of all real numbers? 

Solution: Q(x) is not true for every real number x, because, for instance, Q(3) is false. 

That is, x = 3 is a counterexample for the statement ∀x Q(x). Thus ∀x Q(x) is false. 

EXAMPLE 10 Suppose that P(x) is ―x
2
 > 0.‖ To show that the statement ∀x P(x) is 

false where the universe of discourse consists of all integers, we give a counterexample. 

We see that x = 0 is a counterexample because x
2
 = 0 when x = 0, so that x

2
 is not 

greater than 0 when x = 0. 

Looking for counterexamples to universally quantified statements is an important 

activity in the study of mathematics. 

When all the elements in the domain can be listed - say, x1, x2, . . ., xn - it follows that 

the universal quantification ∀x P(x) is the same as the conjunction  

P(x1) ∧ P(x2) ∧ · · · ∧ P(xn), 

because this conjunction is true if and only if P(x1), P(x2), . . . , P(xn) are all true. 

EXAMPLE 11 What is the truth value of ∀x P(x), where P(x) is the statement ―x
2
 < 10‖ 

and the domain consists of the positive integers not exceeding 4? 

Solution: The statement ∀x P(x) is the same as the conjunction 

P(1) ∧ P(2) ∧ P(3) ∧ P(4), 

because the domain consists of the integers 1, 2, 3, and 4. Because P(4), which is the 

statement ―4
2
 < 10,‖ is false, it follows that ∀x P(x) is false. 

EXAMPLE 12 What does the statement ∀x N(x) mean if N(x) is ―Computer x is 

connected to the network‖ and the domain consists of all computers on campus? 

Solution: The statement ∀x N(x) means that for every computer x on campus, that 

computer x is connected to the network. This statement can be expressed in English as 

“Every computer on campus is connected to the network.” 
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As we have pointed out, specifying the domain is mandatory when quantifiers are used. 

The truth value of a quantified statement often depends on which elements are in this 

domain, as Example 13 shows. 

EXAMPLE 13 What is the truth value of ∀x (x
2
 ≥ x) if the domain consists of all real 

numbers? What is the truth value of this statement if the domain consists of all integers? 

Solution: The universal quantification ∀x (x
2
 ≥ x), where the domain consists of all real 

numbers, is false. For example, (1/2)
2
 < 1/2. Note that x

2
 ≥ x if and only if x

2
 − x = x(x 

− 1) ≥ 0. Consequently, x
2
 ≥ x if and only if x ≤ 0 or x ≥ 1. It follows that ∀x (x

2
 ≥ x) is 

false if the domain consists of all real numbers (because the inequality is false for all 

real numbers x with 0 < x < 1). However, if the domain consists of the integers, ∀x (x
2
 ≥ 

x) is true, because there are no integers x with 0 < x < 1. 

 

THE EXISTENTIAL QUANTIFIER Many mathematical statements assert that there 

is an element with a certain property. Such statements are expressed using existential 

quantification. With existential quantification, we form a proposition that is true if and 

only if P(x) is true for at least one value of x in the domain. 

 

A domain must always be specified when a statement ∃x P(x) is used. Furthermore, the 

meaning of ∃x P(x) changes when the domain changes. Without specifying the domain, 

the statement ∃x P(x) has no meaning. 
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Besides the phrase ―there exists,‖ we can also express existential quantification in many 

other ways, such as by using the words ―for some,‖ ―for at least one,‖ or ―there is.‖ The 

existential quantification ∃x P(x) is read as 

“There is an x such that P(x),” “There is at least one x such that P(x),” or “For some x 

P(x).” 

The meaning of the existential quantifier is summarized in the second row of Table 1. 

We illustrate the use of the existential quantifier in Examples 14–16. 

EXAMPLE 14 Let P(x) denote the statement ―x > 3.‖ What is the truth value of the 

quantification ∃x P(x), where the domain consists of all real numbers? 

Solution: Because ―x > 3‖ is sometimes true - for instance, when x = 4 - the existential 

quantification of P(x), which is ∃x P(x), is true. 

 

Observe that the statement ∃x P(x) is false if and only if there is no element x in the 

domain for which P(x) is true. That is, ∃x P(x) is false if and only if P(x) is false for 

every element of the domain. We illustrate this observation in Example 15. 

 

EXAMPLE 15 Let Q(x) denote the statement ―x = x + 1.‖ What is the truth value of 

the quantification ∃x Q(x), where the domain consists of all real numbers? 

Solution: Because Q(x) is false for every real number x, the existential quantification of 

Q(x), which is ∃x Q(x), is false. 

 

Remark: Generally, an implicit assumption is made that all domains of discourse for 

quantifiers are nonempty. If the domain is empty, then ∃x Q(x) is false whenever Q(x) is 

a propositional function because when the domain is empty, there can be no element x 

in the domain for which Q(x) is true. 
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When all elements in the domain can be listed - say, x1, x2, . . . , xn - the existential 

quantification ∃x P(x) is the same as the disjunction 

P(x1) ∨ P(x2) ∨ · · · ∨ P(xn), 

because this disjunction is true if and only if at least one of P(x1), P(x2), . . . , P (xn) is 

true. 

EXAMPLE 16 What is the truth value of ∃x P(x), where P(x) is the statement ―x
2
 > 10‖ 

and the universe of discourse consists of the positive integers not exceeding 4? 

Solution: Because the domain is {1, 2, 3, 4}, the proposition ∃x P(x) is the same as the 

disjunction  

P(1) ∨ P(2) ∨ P(3) ∨ P(4). 

Because P(4), which is the statement ―4
2 
> 10,‖ is true, it follows that ∃x P(x) is true. 

 

It is sometimes helpful to think in terms of looping and searching when determining the 

truth value of a quantification. Suppose that there are n objects in the domain for the 

variable x. To determine whether ∀x P(x) is true, we can loop through all n values of x 

to see whether P(x) is always true. If we encounter a value x for which P(x) is false, 

then we have shown that ∀x P(x) is false. Otherwise, ∀x P(x) is true. To see whether ∃x 

P(x) is true, we loop through the n values of x searching for a value for which P(x) is 

true. If we find one, then ∃x P(x) is true. If we never find such an x, then we have 

determined that ∃x P(x) is false. (Note that this searching procedure does not apply if 

there are infinitely many values in the domain. However, it is still a useful way of 

thinking about the truth values of quantifications.) 
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Quantifiers with Restricted Domains 

An abbreviated notation is often used to restrict the domain of a quantifier. In this 

notation, a condition a variable must satisfy is included after the quantifier. This is 

illustrated in Example 17. 

EXAMPLE 17 What do the statements ∀x < 0 (x
2
 > 0), ∀y ≠0 (y

3
 ≠ 0), and ∃z > 0 (z

2
 = 

2) mean, where the domain in each case consists of the real numbers? 

Solution: The statement ∀x < 0 (x
2
 > 0) states that for every real number x with x < 0, 

x
2
 > 0. That is, it states ―The square of a negative real number is positive.‖ This 

statement is the same as ∀x(x < 0 → x
2
 > 0). 

The statement ∀y ≠ 0 (y
3
 ≠ 0) states that for every real number y with y ≠ 0, we have y

3 

≠ 0. That is, it states ―The cube of every nonzero real number is nonzero.‖ Note that this 

statement is equivalent to ∀y (y ≠0 → y
3
 ≠0). 

Finally, the statement ∃z > 0 (z
2
 = 2) states that there exists a real number z with z > 0 

such that z
2
 = 2. That is, it states ―There is a positive square root of 2.‖ This statement is 

equivalent to ∃z (z > 0 ∧ z
2
 = 2). 

Note that the restriction of a universal quantification is the same as the universal 

quantification of a conditional statement. For instance, ∀x < 0 (x
2
 > 0) is another way of 

expressing ∀x (x < 0 → x
2
 > 0). On the other hand, the restriction of an existential 

quantification is the same as the existential quantification of a conjunction. For 

instance, ∃z > 0 (z
2
 = 2) is another way of expressing ∃z (z > 0 ∧ z

2
 = 2). 

Precedence of Quantifiers 

The quantifiers ∀ and ∃ have higher precedence than all logical operators from 

propositional calculus. For example, ∀x P(x) ∨ Q(x) is the disjunction of ∀x P(x) and 

Q(x). In other words, it means (∀x P(x)) ∨ Q(x) rather than ∀x (P(x) ∨ Q(x)). 
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Negating Quantified Expressions 

We will often want to consider the negation of a quantified expression. For instance, 

consider the negation of the statement 

“Every student in your class has taken a course in calculus.” 

This statement is a universal quantification, namely, ∀x P(x), where P(x) is the 

statement ―x has taken a course in calculus‖ and the domain consists of the students in 

your class. The negation of this statement is ―It is not the case that every student in your 

class has taken a course in calculus.‖ This is equivalent to ―There is a student in your 

class who has not taken a course in calculus.‖ And this is simply the existential 

quantification of the negation of the original propositional function, namely, ∃x ￢P(x). 

This example illustrates the following logical equivalence: 

￢∀x P(x) ≡ ∃x ￢P(x). 

 

Suppose we wish to negate an existential quantification. For instance, consider the 

proposition ―There is a student in this class who has taken a course in calculus.‖ This is 

the existential quantification ∃x Q(x), where Q(x) is the statement ―x has taken a course 

in calculus.‖ The negation of this statement is the proposition ―It is not the case that 

there is a student in this class who has taken a course in calculus.” This is equivalent to 

―Every student in this class has not taken calculus,‖ which is just the universal 

quantification of the negation of the original propositional function, or, phrased in the 

language of quantifiers, ∀x ¬Q(x). This example illustrates the equivalence: 

¬∃x Q(x) ≡ ∀x ¬Q(x). 

EXAMPLE 18 What are the negations of the statements ∀x (x
2
 > x) and ∃x (x

2
 = 2)? 

Solution: The negation of ∀x (x
2
 > x) is the statement ¬∀x (x

2
 > x), which is equivalent 

to ∃x ¬(x
2
 > x). This can be rewritten as ∃x (x

2
 ≤ x). The negation of ∃x (x

2
 = 2) is the 
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statement ¬∃x (x
2
 = 2), which is equivalent to ∀x ¬(x

2
 = 2). This can be rewritten as ∀x 

(x
2
 ≠ 2). The truth values of these statements depend on the domain. 

 

Using Quantifiers in System Specifications 

EXAMPLE 19 Use predicates and quantifiers to express the system specifications 

―Every mail message larger than one megabyte will be compressed‖ and ―If a user is 

active, at least one network link will be available.‖ 

Solution: Let S(m, y) be ―Mail message m is larger than y megabytes,‖ where the 

variable x has the domain of all mail messages and the variable y is a positive real 

number, and let C(m) denote ―Mail message m will be compressed.‖ Then the 

specification ―Every mail message larger than one megabyte will be compressed‖ can 

be represented as ∀m (S(m, 1) → C(m)). 

Let A(u) represent ―User u is active,‖ where the variable u has the domain of all users, 

let S(n, x) denote ―Network link n is in state x,‖ where n has the domain of all network 

links and x has the domain of all possible states for a network link. Then the 

specification ―If a user is active, at least one network link will be available‖ can be 

represented by: 

∃u A(u) → ∃n S(n, available). 

 

Nested Quantifiers 

Nested quantifiers commonly occur in mathematics and computer science, where one 

quantifier is within the scope of another, such as ∀x∃y (x + y = 0). 

To understand statements involving nested quantifiers, we need to unravel what the 

quantifiers and predicates that appear mean.  

EXAMPLE 20 Assume that the domain for the variables x and y consists of all real 

numbers. The statement ∀x∀y (x + y = y + x) says that x + y = y + x for all real 
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numbers x and y. This is the commutative law for addition of real numbers. Likewise, 

the statement ∀x∃y (x + y = 0) says that for every real number x there is a real number y 

such that x + y = 0. This states that every real number has an additive inverse. 

Similarly, the statement ∀x∀y∀z (x + (y + z) = (x + y) + z) is the associative law for 

addition of real numbers. 

EXAMPLE 21 Translate into English the statement ∀x∀y ((x > 0) ∧ (y < 0) → (xy < 

0)), where the domain for both variables consists of all real numbers. 

Solution: This statement says that for every real number x and for every real number y, 

if x > 0 and y < 0, then xy < 0. That is, this statement says that for real numbers x and y, 

if x is positive and y is negative, then xy is negative. This can be stated more succinctly 

as ―The product of a positive real number and a negative real number is always a 

negative real number.‖ 

 

EXAMPLE 22 Let Q(x, y) denote ―x + y = 0.‖ What are the truth values of the 

quantifications ∃y∀x Q(x, y) and ∀x∃y Q(x, y), where the domain for all variables 

consists of all real numbers? 

Solution: The quantification ∃y∀x Q(x, y) denotes the proposition ―There is a real 

number y such that for every real number x, Q(x, y).” 

No matter what value of y is chosen, there is only one value of x for which x + y = 0. 

Because there is no real number y such that x + y = 0 for all real numbers x, the 

statement ∃y∀x Q(x, y) is false. 

The quantification ∀x∃y Q(x, y) denotes the proposition ―For every real number x there 

is a real number y such that Q(x, y).‖ 

Given a real number x, there is a real number y such that x + y = 0; namely, y = −x. 

Hence, the statement ∀x∃y Q(x, y) is true. 

Example 22 illustrates that the order in which quantifiers appear makes a difference. 
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Integer Representations 

Integers can be expressed using any integer greater than one as a base. Although we 

commonly use decimal (base 10), representations, binary (base 2), octal (base 8), and 

hexadecimal (base 16) representations are often used, especially in computer science. 

In everyday life we use decimal notation to express integers. For example, 965 is used 

to denote  (9 ∙ 10
2
 + 6 ∙10 + 5). However, it is often convenient to use bases other than 

10. In particular, computers usually use binary notation (with 2 as the base) when 

carrying out arithmetic, and octal (base 8) or hexadecimal (base 16) notation when 

expressing characters, such as letters or digits. In fact, we can use any integer greater 

than 1 as the base when expressing integers. This is stated in Theorem 1 

 

The representation of n given in Theorem 1 is called the base b expansion of n. The 

base b expansion of n is denoted by (a
k
a

k−1 
. . . a

1
a

0
)b.  For  instance,   (245)8  represents 

2 ∙ 82 + 4 ∙ 8 + 5 = 165. Typically, the subscript 10 is omitted for base 10 expansions of 

integers because base 10, or decimal expansions, are commonly used to represent 

integers. 

Primes and Greatest Common Divisors 

Primes 

Every integer greater than 1 is divisible by at least two integers, because a positive 

integer is divisible by 1 and by itself. Positive integers that have exactly two different 

positive integer factors are called primes. 
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Remark: The  integer n  is  composite  if  and only  if there exists  an integer  a  such 

that  a | n and 1 < a < n. 

 

EXAMPLE  The prime factorizations of 100, 641, 999, and 1024 are given by 

100 = 2 ・ 2 ・ 5 ・ 5 = 2
2
5

2
, 

641 = 641, 

999 = 3 ・ 3 ・ 3 ・ 37 = 3
3
 ・ 37, 

1024 = 2 ・ 2 ・ 2 ・ 2 ・ 2 ・ 2 ・ 2 ・ 2 ・ 2 ・ 2 = 2
10

. 

 

Trial Division 

It is often important to show that a given integer is prime. For instance, in cryptology, 

large primes are used in some methods for making messages secret. One procedure for 

showing that an integer is prime is based on the following observation. 

 

From Theorem above, it follows that an integer is prime if it is not divisible by any 

prime less than or equal to its square root. This leads to the brute-force algorithm 

known as trial division. To use trial division we divide n by all primes not exceeding 

√  and conclude that n is prime if it is not divisible by any of these primes. In Example 

3 we use trial division to show that 101is prime. 
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EXAMPLE  Show that 101 is prime. 

Solution: The only primes not exceeding √    are 2, 3, 5, and 7. Because 101 is not 

divisible by 2, 3, 5, or 7 (the quotient of 101 and each of these integers is not an 

integer), it follows that 101 is prime. 

 

EXAMPLE  Find the prime factorization of 7007. 

Solution: To find the prime factorization of 7007, first perform divisions of 7007 by 

successive primes, beginning with 2. None of the primes 2, 3, and 5 divides 7007. 

However, 7 divides 7007, with 7007/7 = 1001. Next, divide 1001 by successive primes, 

beginning with 7. It is immediately seen that 7 also divides 1001, because 1001/7 = 143. 

Continue by dividing 143 by successive primes, beginning with 7. Although 7 does not 

divide 143, 11 does divide 143, and 143/11 = 13. Because 13 is prime, the procedure is 

completed. It follows that 7007 = 7 ・ 1001 = 7 ・ 7 ・ 143 = 7 ・ 7 ・ 11 ・ 13. 

Consequently, the prime factorization of 7007 is 7 ・ 7 ・ 11 ・ 13 = 7
2
 ・ 11 ・ 13. 

 

Greatest Common Divisor and Least Common Multiple 

1- Greatest Common Divisor 

The largest integer that divides both of two integers is called the greatest common 

divisor of these integers. 

 

The greatest common divisor of two integers, not both zero, exists because the set of 

common divisors of these integers is nonempty and finite. One way to find the greatest 
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common divisor of two integers is to find all the positive common divisors of both 

integers and then take the largest divisor. 

EXAMPLE What is the greatest common divisor of 24 and 36? 

Solution: The positive common divisors of 24 and 36 are 1, 2, 3, 4, 6, and 12. Hence, 

gcd(24, 36) = 12. 

- Relatively Prime 

The integers a and b are relatively prime if their greatest common divisor is 1. 

EXAMPLE What is the greatest common divisor of 17 and 22? 

Solution: The integers 17 and 22 have no positive common divisors other than 1, so that 

gcd(17, 22) = 1.  So, 17 and 22 are relatively prime numbers. 

 

Finding the Greatest Common Divisor using Prime Factorization 

Suppose the prime factorizations of a and b are: 

 

where each exponent is a nonnegative integer, and where all primes occurring in either 

prime factorization are included in both, with zero exponents if necessary. Then: 

 

EXAMPLE Because the prime factorizations of 120 and 500 are  

120 = 2
3
 ・ 3 ・ 5,     and  

500 = 2
2
 ・ 5

3
,  

The greatest common divisor is: 

gcd(120, 500) = 2
min(3, 2)

3
min(1, 0)

5
min(1, 3) 

= 2
2
3

0
5

1
 = 20. 
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2- Least Common Multiple 

The least common multiple of the positive integers a and b is the smallest positive 

integer that is divisible by both a and b. The least common multiple of a and b is 

denoted by lcm(a; b). 

Finding the Least Common Multiple Using Prime Factorizations 

Suppose the prime factorizations of a and b are: 

 

where each exponent is a nonnegative integer, and where all primes occurring in either 

prime factorization are included in both, with zero exponents if necessary. Then: 

 

EXAMPLE What is the least common multiple of 2
3
3

5
7

2
 and 2

4
3

3
? 

Solution: We have 

lcm(2
3
3

5
7

2
, 2

4
3

3
) = 2

max(3, 4)
3

max(5, 3)
7

max(2, 0) 
= 2

4
3

5
7

2 

 

 

The Euclidean Algorithm 

Computing the greatest common divisor of two integers directly from the prime 

factorizations of these integers is inefficient. The reason is that it is time-consuming to 

find prime factorizations. 

We will give a more efficient method of finding the greatest common divisor, called the 
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Euclidean algorithm. This algorithm has been known since ancient times. It is named 

after the ancient Greek mathematician Euclid, who included a description of this 

algorithm in his book The Elements. 

We will show how Euclidean algorithm is used to find gcd(91, 287). 

First, divide 287, the larger of the two integers, by 91, the smaller, to obtain 

287 = 91 ・ 3 + 14. 

Any divisor of 91 and 287 must also be a divisor of 287 − 91 ・ 3 = 14. Also, any 

divisor of 91 and 14 must also be a divisor of 287 = 91 ・ 3 + 14. Hence, the greatest 

common divisor of 9 and 287 is the same as the greatest common divisor of 91 and 14. 

This means that the problem of finding gcd(91, 287) has been reduced to the problem of 

finding gcd(91, 14). 

Next, divide 91 by 14 to obtain 91 = 14 ・ 6 + 7. 

Because any common divisor of 91 and 14 also divides 91 − 14 ・ 6 = 7 and any 

common divisor of 14 and 7 divides 91, it follows that gcd(91, 14) = gcd(14, 7). 

Continue by dividing 14 by 7, to obtain 14 = 7 ・ 2. 

Because 7 divides 14, it follows that gcd(14, 7) = 7. Furthermore, because gcd(287, 91) 

= gcd(91, 14) = gcd(14, 7) = 7, the original problem has been solved. 

 

Generally, Euclidean algorithm state that: 

Let a = bq + r where a; b; q, and r are integers. Then: 

 

gcd(a, b) = gcd(b, r) 

Also written as: 

gcd(a, b) = gcd((b, (a mod b)) 



University of Basra – Collage of Engineering – Computer Engineering Department 

Discrete Structures, 2
nd

 year, Computer Eng. Dept.                               Prepared by: Dr. Mohammed A. Al-Ebadi 

 

7 
 

EXAMPLE Find the greatest common divisor of 414 and 662 using the Euclidean 

algorithm. 

Solution: Successive uses of the division algorithm give: 

662 = 414 ・ 1 + 248 

414 = 248 ・ 1 + 166 

248 = 166 ・ 1 + 82 

166 = 82 ・ 2 + 2 

82 = 2 ・ 41. 

Hence, gcd(414, 662) = 2, because 2 is the last nonzero remainder. 
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Sequences and Summations 

Sequences are ordered lists of elements, used in discrete mathematics in many ways. 

For example, they can be used to represent solutions to certain counting problems. They 

are also an important data structure in computer science. We will often need to work 

with sums of terms of sequences in our study of discrete mathematics. This section 

reviews the use of summation notation, basic properties of summations, and formulas 

for the sums of terms of some particular types of sequences. 

 

1- Sequences 

A sequence is a discrete structure used to represent an ordered list. For example, 1, 2, 3, 

5, 8 is a sequence with five terms and 1, 3, 9, 27, 81 , . . . , 3
n
, . . . is an infinite 

sequence. 

 

We use the notation {an} to describe the sequence. We describe sequences by listing the 

terms of the sequence in order of increasing subscripts. 

EXAMPLE  Consider the sequence {an}, where an = 
 

 
 

The list of the terms of this sequence, beginning with a1, namely, 

a1, a2, a3, a4, . . . , 

starts with 
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  Remark: A geometric progression is a discrete analogue of the exponential function 

f(x) = ar
x
. 

EXAMPLE  The sequences {bn} with bn = (−1)
n
, {cn} with cn = 2 ・5

n
, and {dn} with 

dn = 6 ・(1/3)
n
 are geometric progressions with initial term and common ratio equal to 1 

and −1; 2 and 5; and 6 and 1/3, respectively, if we start at n = 0. The list of terms b0, b1, 

b2, b3, b4, . . . begins with 

1,−1, 1,−1, 1, . . . ; 

the list of terms c0, c1, c2, c3, c4, . . . begins with 

2, 10, 50, 250, 1250, . . . ; 

and the list of terms d0, d1, d2, d3, d4, . . . begins with 

 

 

 

Remark: An arithmetic progression is a discrete analogue of the linear function f (x) = 

dx + a. 

EXAMPLE 3 The sequences {sn} with sn = −1 + 4n and {tn} with tn = 7 − 3n are both 

arithmetic progressions with initial terms and common differences equal to −1 and 4, 
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and 7 and −3, respectively, if we start at n = 0. The list of terms s0, s1, s2, s3, . . . begins 

with −1, 3, 7, 11, . . . , and the list of terms t0, t1, t2, t3, . . . begins with 7, 4, 1,−2, . . . . 

 

Sequences of the form a1, a2, . . . , an are often used in computer science. These finite 

sequences are also called strings. This string is also denoted by a1a2 . . . an. The length 

of a string is the number of terms in this string. The empty string, denoted by λ, is the 

string that has no terms. The empty string has length zero. 

EXAMPLE  The string abcd is a string of length four. 

 

- Recurrence Relations 

In examples above we specified sequences by providing explicit formulas for their 

terms. There are many other ways to specify a sequence. For example, another way to 

specify a sequence is to provide one or more initial terms together with a rule for 

determining subsequent terms from those that precede them. 

 

 

 

EXAMPLE Let {an} be a sequence that satisfies the recurrence relation an = an−1 + 3 

for n = 1, 2, 3, . . . , and suppose that a0 = 2. What are a1, a2, and a3? 

Solution: We see from the recurrence relation that a1 = a0 + 3 = 2 + 3 = 5. It then 

follows that a2 = 5 + 3 = 8 and a3 = 8 + 3 = 11. 
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EXAMPLE Let {an} be a sequence that satisfies the recurrence relation an = an−1 − 

an−2 for n = 2, 3, 4, . . . , and suppose that a0 = 3 and a1 = 5. What are a2 and a3? 

Solution: We see from the recurrence relation that a2 = a1 − a0 = 5 − 3 = 2 and a3 = a2 

−a1 = 2 − 5 = −3.We can find a4, a5, and each successive term in a similar way. 

 

EXAMPLE Find the Fibonacci numbers f2, f3, f4, f5, and f6. 

Solution: The recurrence relation for the Fibonacci sequence tells us that we find 

successive terms by adding the previous two terms. Because the initial conditions tell us 

that f0 = 0 and f1 = 1, using the recurrence relation in the definition we find that 

f2 = f1 + f0 = 1 + 0 = 1, 

f3 = f2 + f1 = 1 + 1 = 2, 

f4 = f3 + f2 = 2 + 1 = 3, 

f5 = f4 + f3 = 3 + 2 = 5, 

f6 = f5 + f4 = 5 + 3 = 8. 

EXAMPLE Suppose that {an} is the sequence of integers defined by an = n!, the value 

of the factorial function at the integer n, where n = 1, 2, 3, . . .. Because n! = n((n − 1)(n 

− 2) . . . 2 ・ 1) = n(n − 1)! = nan−1, we see that the sequence of factorials satisfies the 

recurrence relation an = nan−1, together with the initial condition a1 = 1. 

 

NOTE: We say that we have solved the recurrence relation together with the initial 

conditions when we find an explicit formula, called a closed formula, for the terms of 

the sequence. 



University of Basra – Collage of Engineering – Computer Engineering Department 

Discrete Structures, 2
nd

 year, Computer Eng. Dept.                               Prepared by: Dr. Mohammed A. Al-Ebadi 

 

5 
 

EXAMPLE Determine whether the sequence {an}, where an = 3n for every 

nonnegative integer n, is a solution of the recurrence relation an = 2an−1 − an−2 for n = 2, 

3, 4, . . . . Answer the same question where an = 2
n
 and where an = 5. 

Solution: Suppose that an = 3n for every nonnegative integer n. Then, for n ≥ 2, we see 

that 2an−1 − an−2 = 2(3(n − 1)) − 3(n − 2) = 3n = an. Therefore, {an}, where an = 3n, is a 

solution of the recurrence relation. 

Suppose that an = 2
n
 for every nonnegative integer n. Note that a0 = 1, a1 = 2, and a2 = 4. 

Because 2a1 − a0 = 2 ・ 2 − 1 = 3  a2, we see that {an}, where an = 2
n
, is not a solution 

of the recurrence relation. 

Suppose that an = 5 for every nonnegative integer n. Then for n ≥ 2, we see that an = 

2an−1 − an−2 = 2 ・ 5 − 5 = 5 = an. Therefore, {an}, where an = 5, is a solution of the 

recurrence relation. 

EXAMPLE Compound Interest Suppose that a person deposits $10,000 in a savings 

account at a bank yielding 11% per year with interest compounded annually. How much 

will be in the account after 30 years? 

Solution: To solve this problem, let Pn denote the amount in the account after n years. 

Because the amount in the account after n years equals the amount in the account after 

n−1 years plus interest for the nth year, we see that the sequence {Pn} satisfies the 

recurrence relation Pn = Pn−1 + 0.11Pn−1 = (1.11)Pn−1. 

The initial condition is P0 = 10,000. We can use an iterative approach to find a formula 

for Pn. Note that 

P1 = (1.11)P0 

P2 = (1.11)P1 = (1.11)
2
P0 

P3 = (1.11)P2 = (1.11)
3
P0 

... 
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Pn = (1.11)Pn−1 = (1.11)
n
P0. 

When we insert the initial condition P0 = 10,000, the formula Pn = (1.11)
n
10,000 is 

obtained. 

Inserting n = 30 into the formula Pn = (1.11)
n
10,000 shows that after 30 years the 

account contains 

P30 = (1.11)
30

10,000 = $228,922.97. 

EXAMPLE How can we produce the terms of a sequence if the first 10 terms are 5, 11, 

17, 23, 29, 35, 41, 47, 53, 59? 

Solution: Note that each of the first 10 terms of this sequence after the first is obtained 

by adding 6 to the previous term. (We could see this by noticing that the difference 

between consecutive terms is 6.) Consequently, the nth term could be produced by 

starting with 5 and adding 6 a total of n − 1 times; that is, a reasonable guess is that the 

nth term is 5 + 6(n − 1) = 6n − 1. 

(This is an arithmetic progression with a = 5 and d = 6.) 

EXAMPLE Conjecture a simple formula for an if the first 10 terms of the sequence 

{an} are 1, 7, 25, 79, 241, 727, 2185, 6559, 19681, 59047. 

Solution: To attack this problem, we begin by looking at the difference of consecutive 

terms, but we do not see a pattern. When we form the ratio of consecutive terms to see 

whether each term is a multiple of the previous term, we find that this ratio, although 

not a constant, is close to 3. So it is reasonable to suspect that the terms of this sequence 

are generated by a formula involving 3
n
. Comparing these terms with the corresponding 

terms of the sequence {3
n
},  i.e. (3, 9, 27, 81, 243, 729, 2187, 6561, 19683, 59049, . . .), 

we notice that the nth term is 2 less than the corresponding power of 3. We see that an = 

3
n
 – 2 for 1 ≤ n ≤ 10 and conjecture that this formula holds for all n. 
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2- Summations 

Next, we consider the addition of the terms of a sequence. For this we introduce 

summation notation. We begin by describing the notation used to express the sum of 

the terms 

am, am+1, . . . , an 

from the sequence {an}.We use the notation 

 

(read as the sum from j = m to j = n of aj ) to represent 

am + am+1 +・ ・ ・+an. 

Here, the variable j is called the index of summation, and the choice of the letter j as 

the variable is arbitrary; that is, we could have used any other letter, such as i or k. Or, 

in notation, 

 

Here, the index of summation runs through all integers starting with its lower limit m 

and ending with its upper limit n. A large uppercase Greek letter sigma,      , is used to 

denote summation. 

The usual laws for arithmetic apply to summations. For example, when a and b are real 

numbers, we have 

  
where x1, x2, . . . , xn and y1, y2, . . . , yn are real numbers.  

 

EXAMPLE Use summation notation to express the sum of the first 100 terms of the 

sequence {aj }, where aj = 1/j for j = 1, 2, 3, . . . . 

Solution: The lower limit for the index of summation is 1, and the upper limit is 100. 

We write this sum as 
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EXAMPLE What is the value of  

Solution: We have 

 

 

 

 

 

 

EXAMPLE What is the value of 

 

Solution: We have 

 

 

 

 

EXAMPLE Double summations arise in many contexts (as in the analysis of nested 

loops in computer programs). An example of a double summation is 

 

To evaluate the double sum, first expand the inner summation and then continue by 

computing the outer summation: 
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We can also use summation notation to add all values of a function, or terms of an 

indexed set, where the index of summation runs over all values in a set. That is, we 

write 

 

to represent the sum of the values f (s), for all members s of S. 

 

EXAMPLE What is the value of 

Solution: Because_s ∈ {0,2,4} s represents the sum of the values of s for all the 

members of the set {0, 2, 4}, it follows that 

 

 

Certain sums arise repeatedly throughout discrete mathematics. Having a collection of 

formulae for such sums can be useful; Table 1  provides a small table of formulae for 

commonly occurring sums. 

 

EXAMPLE Find 

Solution: First note that because                                                            we have 

 

 

 

Using the formula                                                             from Table 1 we see that 

 



University of Basra – Collage of Engineering – Computer Engineering Department 

Discrete Structures, 2
nd

 year, Computer Eng. Dept.                               Prepared by: Dr. Mohammed A. Al-Ebadi 

 

10 
 

 



University of Basra – Collage of Engineering – Computer Engineering Department 

Discrete Structures, 2
nd

 year, Computer Eng. Dept.                               Prepared by: Dr. Mohammed A. Al-Ebadi 

 

1 
 

Counting 

Suppose that a password on a computer system consists of six, seven, or eight 

characters. Each of these characters must be a digit or a letter of the alphabet. Each 

password must contain at least one digit. How many such passwords are there? The 

techniques needed to answer this question and a wide variety of other counting 

problems will be introduced in this section. Counting problems arise throughout 

mathematics and computer science. For example, we must count the successful 

outcomes of experiments and all the possible outcomes of these experiments to 

determine probabilities of discrete events. We need to count the number of operations 

used by an algorithm to study its time complexity. We will introduce the basic 

techniques of counting in this section. These methods serve as the foundation for almost 

all counting techniques. 

 

Basic Counting Principles 

We first present two basic counting principles, the product rule and the sum rule. Then 

we will show how they can be used to solve many different counting problems.  

 

1- THE PRODUCT RULE Suppose that a procedure can be broken down into a 

sequence of two tasks. If there are n1 ways to do the first task and for each of these 

ways of doing the first task, there are n2 ways to do the second task, then there are n1n2 

ways to do the procedure. 

 

EXAMPLE 1 A new company with just two employees, Sanchez and Patel, rents a 

floor of a building with 12 offices. How many ways are there to assign different offices 

to these two employees? 
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Solution: The procedure of assigning offices to these two employees consists of 

assigning an office to Sanchez, which can be done in 12 ways, then assigning an office 

to Patel different from the office assigned to Sanchez, which can be done in 11 ways. 

By the product rule, there are 12 · 11 = 132 ways to assign offices to these two 

employees. 

EXAMPLE 2 The chairs of an auditorium are to be labeled with an uppercase English 

letter followed by a positive integer not exceeding 100. What is the largest number of 

chairs that can be labeled differently? 

Solution: The procedure of labeling a chair consists of two tasks, namely, assigning to 

the seat one of the 26 uppercase English letters, and then assigning to it one of the 100 

possible integers. 

The product rule shows that there are 26 · 100 = 2600 different ways that a chair can be 

labeled. Therefore, the largest number of chairs that can be labeled differently is 2600. 

EXAMPLE 3 There are 32 microcomputers in a computer center. Each microcomputer 

has 24 ports. How many different ports to a microcomputer in the center are there? 

Solution: The procedure of choosing a port consists of two tasks, first picking a 

microcomputer and then picking a port on this microcomputer. Because there are 32 

ways to choose the microcomputer and 24 ways to choose the port no matter which 

microcomputer has been selected, the product rule shows that there are 32 · 24 = 768 

ports. 

- An extended version of the product rule is often useful. Suppose that a procedure 

is carried out by performing the tasks T1, T2, . . . , Tm in sequence. If each task Ti , 

i = 1, 2, . . . , n, can be done in ni ways, regardless of how the previous tasks were 

done, then there are n1 · n2 · · · · · nm ways to carry out the procedure.  
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EXAMPLE 4 How many different bit strings of length seven are there? 

Solution: Each of the seven bits can be chosen in two ways, because each bit is either 0 

or 1. Therefore, the product rule shows there are a total of 27 = 128 different bit strings 

of length seven. 

 

EXAMPLE 5 How many different license plates can be made if each plate contains a 

sequence of three uppercase English letters followed by three digits (and no sequences 

of letters are prohibited, even if they are obscene)? 

 

 

 

 

Solution: There are 26 choices for each of the three uppercase English letters and ten 

choices for each of the three digits. Hence, by the product rule there are a total of 26 · 

26 · 26 · 10 · 10 · 10 = 17,576,000 possible license plates. 

EXAMPLE 6 Counting Functions: How many functions are there from a set with m 

elements to a set with n elements? 

Solution: A function corresponds to a choice of one of the n elements in the codomain 

for each of the m elements in the domain. Hence, by the product rule there are n · n · · · · 

· n = nm functions from a set with m elements to one with n elements. For example, 

there are 5
3
 = 125 different functions from a set with three elements to a set with five 

elements. 

 

EXAMPLE 7 Counting One-to-One: Functions How many one-to-one functions are 

there from a set with m elements to one with n elements? 
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Solution: First note that when m > n there are no one-to-one functions from a set with 

m elements to a set with n elements. 

Now let m ≤ n. Suppose the elements in the domain are a1, a2, . . . , am. There are n ways 

to choose the value of the function at a1. Because the function is one-to-one, the value 

of the function at a2 can be picked in n − 1 ways (because the value used for a1 cannot 

be used again). 

In general, the value of the function at ak can be chosen in n − k + 1 ways. By the 

product rule, there are n(n − 1)(n − 2) · · · (n − m + 1) one-to-one functions from a set 

with m elements to one with n elements. 

For example, there are 5 · 4 · 3 = 60 one-to-one functions from a set with three 

elements to a set with five elements. 

EXAMPLE 8 The Telephone Numbering Plan: The North American numbering plan 

(NANP) specifies the format of telephone numbers in the U.S., Canada, and many other 

parts of North America. A telephone number in this plan consists of 10 digits, which are 

split into a three-digit area code, a three-digit office code, and a four-digit station code. 

To specify the allowable format, let X denote a digit that can take any of the values 0 

through 9, let N denote a digit that can take any of the values 2 through 9, and let Y 

denote a digit that must be a 0 or a 1. Two numbering plans, which will be called the 

old plan, and the new plan, will be discussed. In the old plan, the formats of the area 

code, office code, and station code are NYX, NNX, and XXXX, respectively, so that 

telephone numbers had the form NYX-NNX-XXXX. In the new plan, the formats of 

these codes are NXX, NXX, and XXXX, respectively, so that telephone numbers have 

the form NXX-NXX-XXXX.  

How many different North American telephone numbers are possible under the old plan 

and under the new plan? 
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Solution: By the product rule, there are 8 · 2 · 10 = 160 area codes with format NYX 

and 8 · 10 · 10 = 800 area codes with format NXX. Similarly, by the product rule, 

there are 8 · 8 · 10 = 640 office codes with format NNX. The product rule also shows 

that there are: 

10 · 10 · 10 · 10 = 10,000 station codes with format XXXX. 

Consequently, applying the product rule again, it follows that under the old plan there 

are 160 · 640 · 10,000 = 1,024,000,000 different numbers available in North America. 

 Under the new plan, there are 800 · 800 · 10,000 = 6,400,000,000 different numbers 

available. 

2- THE SUM RULE If a task can be done either in one of n1 ways or in one of n2 

ways, where none of the set of n1 ways is the same as any of the set of n2 ways, then 

there are n1 + n2 ways to do the task. 

 

EXAMPLE 9 Suppose that either a member of the mathematics faculty or a student 

who is a mathematics major is chosen as a representative to a university committee. 

How many different choices are there for this representative if there are 37 members of 

the mathematics faculty and 83 mathematics majors and no one is both a faculty 

member and a student? 

Solution: There are 37 ways to choose a member of the mathematics faculty and there 

are 83 ways to choose a student who is a mathematics major. Choosing a member of the 

mathematics faculty is never the same as choosing a student who is a mathematics 

major because no one is both a faculty member and a student. By the sum rule it follows 

that there are 37 + 83 = 120 possible ways to pick this representative. 

- We can extend the sum rule to more than two tasks. Suppose that a task can be 

done in one of n1 ways, in one of n2 ways, . . . , or in one of nm ways, where none 

of the set of ni ways of doing the task is the same as any of the set of nj ways, for 
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all pairs i and j with  1≤ i < j ≤ m. Then the number of ways to do the task is n1 + 

n2 +· · ·+nm. 

EXAMPLE 10 A student can choose a computer project from one of three lists. The 

three lists contain 23, 15, and 19 possible projects, respectively. No project is on more 

than one list. How many possible projects are there to choose from? 

Solution: The student can choose a project by selecting a project from the first list, the 

second list, or the third list. Because no project is on more than one list, by the sum rule 

there are 23 + 15 + 19 = 57 ways to choose a project. 

More Complex Counting Problems 

Many counting problems cannot be solved using just the sum rule or just the product 

rule. However, many complicated counting problems can be solved using both of these 

rules in combination. 

 

EXAMPLE 11 In a version of the computer language BASIC, the name of a variable is 

a string of one or two alphanumeric characters, where uppercase and lowercase letters 

are not distinguished. (An alphanumeric character is either one of the 26 English letters 

or one of the 10 digits.) Moreover, a variable name must begin with a letter and must be 

different from the five strings of two characters that are reserved for programming use. 

How many different variable names are there in this version of BASIC? 

Solution: Let V equal the number of different variable names in this version of BASIC. 

Let V1 be the number of these that are one character long and V2 be the number of these 

that are two characters long. Then by the sum rule, V = V1 + V2. Note that V1 = 26, 

because a one-character variable name must be a letter. Furthermore, by the product 

rule there are 26 · 36 strings of length two that begin with a letter and end with an 

alphanumeric character. However, five of these are excluded, so V2 = 26 · 36 − 5 = 931. 

Hence, there are V = V1 + V2 = 26 + 931 = 957 different names for variables in this 

version of BASIC. 
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EXAMPLE 12 Each user on a computer system has a password, which is six to eight 

characters long, where each character is an uppercase letter or a digit. Each password 

must contain at least one digit. How many possible passwords are there? 

Solution: Let P be the total number of possible passwords, and let P6, P7, and P8 denote 

the number of possible passwords of length 6, 7, and 8, respectively. By the sum rule, P 

= P6 + P7 + P8.We will now find P6, P7, and P8. Finding P6 directly is difficult. To find 

P6 it is easier to find the number of strings of uppercase letters and digits that are six 

characters long, including those with no digits, and subtract from this the number of 

strings with no digits. By the product rule, the number of strings of six characters is 36
6
, 

and the number of strings with no digits is 26
6
. Hence,  

P6 = 36
6
 − 26

6
 = 2,176,782,336 − 308,915,776 = 1,867,866,560. 

Similarly, we have 

P7 = 36
7
 − 26

7
 = 78,364,164,096 − 8,031,810,176 = 70,332,353,920 

and 

P8 = 36
8
 − 26

8
 = 2,821,109,907,456 − 208,827,064,576 = 2,612,282,842,880. 

Consequently, 

P = P6 + P7 + P8 = 2,684,483,063,360. 
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3- The Subtraction Rule 

Suppose that a task can be done in one of two ways, but some of the ways to do it 

are common to both ways. In this situation, we cannot use the sum rule to count the 

number of ways to do the task. If we add the number of ways to do the tasks in these 

two ways, we get an overcount of the total number of ways to do it, because the 

ways to do the task that are common to the two ways are counted twice. To correctly 

count the number of ways to do the two tasks, we must subtract the number of ways 

that are counted twice. 

 

The subtraction rule is also known as the principle of inclusion–exclusion, especially 

when it is used to count the number of elements in the union of two sets. Suppose that 

A1 and A2 are sets. Then, there are |A1| ways to select an element from A1 and |A2| ways 

to select an element from A2. The number of ways to select an element from A1 or from 

A2, that is, the number of ways to select an element from their union, is the sum of the 

number of ways to select an element from A1 and the number of ways to select an 

element from A2, minus the number of ways to select an element that is in both A1 and 

A2. Because there are |A1 ∪ A2|ways to select an element in either A1 or in A2, and |A1 ∩ 

A2| ways to select an element common to both sets, we have  

|A1 ∪ A2| = |A1| + |A2| − |A1 ∩ A2|. 
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EXAMPLE 13 How many bit strings of length eight either start with a 1 bit or end with 

the two bits 00? 

 

Solution: We can construct a bit string of length eight that either starts with a 1 bit or 

ends with the two bits 00, by constructing a bit string of length eight beginning with a 1 

bit or by constructing a bit string of length eight that ends with the two bits 00. We can 

construct a bit string of length eight that begins with a 1 in 2
7
 = 128 ways. This follows 

by the product rule, because the first bit can be chosen in only one way and each of the 

other seven bits can be chosen in two ways. Similarly, we can construct a bit string of 

length eight ending with the two bits 00, in 2
6
 = 64 ways. This follows by the product 

rule, because each of the first six bits can be chosen in two ways and the last two bits 

can be chosen in only one way. 

Some of the ways to construct a bit string of length eight starting with a 1 are the same 

as the ways to construct a bit string of length eight that ends with the two bits 00. There 

are 2
5
 = 32 ways to construct such a string. This follows by the product rule, because 

the first bit can be chosen in only one way, each of the second through the sixth bits can 

be chosen in two ways, and the last two bits can be chosen in one way. Consequently, 

the number of bit strings of length eight that begin with a 1 or end with a 00, which 

equals the number of ways to construct a bit string of length eight that begins with a 1 

or that ends with 00, equals 128 + 64 − 32 = 160. 
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EXAMPLE 14 A computer Company receives 350 applications from computer 

graduates for a job planning a line of new Web servers. Suppose that 220 of these 

applicants majored in computer science, 147 majored in business, and 51 majored both 

in computer science and in business. How many of these applicants majored neither in 

computer science nor in business? 

Solution: To find the number of these applicants who majored neither in computer 

science nor in business, we can subtract the number of students who majored either in 

computer science or in business (or both) from the total number of applicants. Let A1 be 

the set of students who majored in computer science and A2 the set of students who 

majored in business. Then A1 ∪ A2 is the set of students who majored in computer 

science or business (or both), and A1 ∩ A2 is the set of students who majored both in 

computer science and in business. By the subtraction rule the number of students who 

majored either in computer science or in business (or both) equals 

|A1 ∪ A2| = |A1| + |A2| − |A1 ∩ A2| = 220 + 147 − 51 = 316. 

We conclude that 350 − 316 = 34 of the applicants majored neither in computer science 

nor in business. 

 

- The subtraction rule, or the principle of inclusion–exclusion, can be generalized 

to find the number of ways to do one of n different tasks or, equivalently, to find 

the number of elements in the union of n sets, whenever n is a positive integer. 
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4- The Division Rule 

We have introduced the product, sum, and subtraction rules for counting. You may 

wonder whether there is also a division rule for counting. In fact, there is such a rule, 

which can be useful when solving certain types of enumeration problems. 

 

We can restate the division rule in terms of sets: “If the finite set A is the union of n 

pairwise disjoint subsets each with d elements, then n = |A|/d.”  We can also formulate 

the division rule in terms of functions: “If f is a function from A to B where A and B are 

finite sets, and that for every value y ∈ B there are exactly d values x ∈ A such that f (x) 

= y (in which case, we say that f is d-to-one), then |B| = |A|/d.” 

EXAMPLE 15 How many different ways are there to seat four people around a circular 

table, where two seatings are considered the same when each person has the same left 

neighbor and the same right neighbor? 

Solution: We arbitrarily select a seat at the table and label it seat 1. We number the rest 

of the seats in numerical order, proceeding clockwise around the table. Note that are 

four ways to select the person for seat 1, three ways to select the person for seat 2, two 

ways to select the person for seat 3, and one way to select the person for seat 4. Thus, 

there are 4! = 24 ways to order the given four people for these seats. However, each of 

the four choices for seat 1 leads to the same arrangement, as we distinguish two 

arrangements only when one of the people has a different immediate left or immediate 

right neighbor. Because there are four ways to choose the person for seat 1, by the 

division rule there are 24/4 = 6 different seating arrangements of four people around the 

circular table. 
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5- Tree Diagrams 

Counting problems can be solved using tree diagrams. A tree consists of a root, a 

number of branches leaving the root, and possible additional branches leaving the 

endpoints of other branches. To use trees in counting, we use a branch 

to represent each possible choice. We represent the possible outcomes by the leaves, 

which are the endpoints of branches not having other branches starting at them. 

Note that when a tree diagram is used to solve a counting problem, the number of 

choices of which branch to follow to reach a leaf can vary. 

EXAMPLE 16 How many bit strings of length four do not have two consecutive 1s? 

Solution: The tree diagram in Figure 2 displays all bit strings of length four without 

two consecutive 1s. We see that there are eight bit strings of length four without two 

consecutive 1s.  

 

 

 

 

 

 

 

 

 

 

EXAMPLE 17 Suppose that “I Love New Jersey” T-shirts come in five different sizes: 

S, M, L, XL, and XXL. Further suppose that each size comes in four colors, white, red, 

green, and black, except for XL, which comes only in red, green, and black, and XXL, 
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which comes only in green and black. How many different shirts does a souvenir shop 

have to stock to have at least one of each available size and color of the T-shirt? 

Solution: The tree diagram in Figure 4 displays all possible size and color pairs. It 

follows that the souvenir shop owner needs to stock 17 different T-shirts. 
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The Pigeonhole Principle 

Suppose that a flock of 20 pigeons flies into a set of 19 pigeonholes to roost. Because 

there are 20 pigeons but only 19 pigeonholes, a least one of these 19 pigeonholes must 

have at least two pigeons in it. To see why this is true, note that if each pigeonhole had 

at most one pigeon in it, at most 19 pigeons, one per hole, could be accommodated. 

This illustrates a general principle called the pigeonhole principle, which states that if 

there are more pigeons than pigeonholes, then there must be at least one pigeonhole 

with at least two pigeons in it (see Figure 1). Of course, this principle applies to other 

objects besides pigeons and pigeonholes. 
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We will illustrate the usefulness of the pigeonhole principle. We first show that it can 

be used to prove a useful corollary about functions. 

 

Proof: Suppose that for each element y in the codomain of f we have a box that contains 

all elements x of the domain of f such that f (x) = y. Because the domain contains k + 1 

or more elements and the codomain contains only k elements, the pigeonhole principle 

tells us that one of these boxes contains two or more elements x of the domain. This 

means that f cannot be one-to-one. 

EXAMPLE 1 Among any group of 367 people, there must be at least two with the 

same birthday, because there are only 366 possible birthdays. 

EXAMPLE 2 In any group of 27 English words, there must be at least two that begin 

with the same letter, because there are 26 letters in the English alphabet. 

EXAMPLE 3 How many students must be in a class to guarantee that at least two 

students receive the same score on the final exam, if the exam is graded on a scale from 

0 to 100 points? 

Solution: There are 101 possible scores on the final. The pigeonhole principle shows 

that among any 102 students there must be at least 2 students with the same score. 

 

THE GENERALIZED PIGEONHOLE PRINCIPLE If N objects are placed into k 

boxes, then there is at least one box containing at least ⌈   ⌉ objects. 

 

EXAMPLE 4 Among 100 people there are at least ⌈      ⌉= 9 who were born in the 

same month. 
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EXAMPLE 5 What is the minimum number of students required in a discrete 

mathematics class to be sure that at least six will receive the same grade, if there are 

five possible grades, A, B, C, D, and F? 

Solution: The minimum number of students needed to ensure that at least six students 

receive the same grade is the smallest integer N such that ⌈   ⌉= 6. The smallest such 

integer is N = 5 · 5 + 1 = 26. If you have only 25 students, it is possible for there to be 

five who have received each grade so that no six students have received the same grade. 

Thus, 26 is the minimum number of students needed to ensure that at least six students 

will receive the same grade. 

EXAMPLE 6  How many cards must be selected from a standard deck of 52 cards to 

guarantee that at least three cards of the same suit are chosen? 

Solution: Suppose there are four boxes, one for each suit, and as cards are selected they 

are placed in the box reserved for cards of that suit. Using the generalized pigeonhole 

principle, we see that if N cards are selected, there is at least one box containing at least 

⌈   ⌉ cards. Consequently, we know that at least three cards of one suit are selected if 

⌈   ⌉ ≥ 3. The smallest integer N such that ⌈   ⌉ ≥ 3 is N = 2 · 4 + 1 = 9, so nine cards 

suffice. Note that if eight cards are selected, it is possible to have two cards of each suit, 

so more than eight cards are needed. Consequently, nine cards must be selected to 

guarantee that at least three cards of one suit are chosen. One good way to think about 

this is to note that after the eighth card is chosen, there is no way to avoid having a third 

card of some suit. 

EXAMPLE 7 What is the least number of area codes needed to guarantee that the 25 

million phones in a state can be assigned distinct 10-digit telephone numbers? (Assume 

that telephone numbers are of the form NXX-NXX-XXXX, where the first three digits 

form the area code, N represents a digit from 2 to 9 inclusive, and X represents any 

digit.) 
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Solution: There are eight million different phone numbers of the form NXX-XXXX. 

Hence, by the generalized pigeonhole principle, among 25 million telephones, at least 

⌈                    ⌉= 4 of them must have identical phone numbers. Hence, at 

least four area codes are required to ensure that all 10-digit numbers are different. 



University of Basra – Collage of Engineering – Computer Engineering Department 

Discrete Structures, 2
nd

 year, Computer Eng. Dept.                               Prepared by: Dr. Mohammed A. Al-Ebadi 

 

18 
 

Permutations and Combinations 

Introduction 

Many counting problems can be solved by finding the number of ways to arrange a 

specified number of distinct elements of a set of a particular size, where the order of 

these elements matters. Many other counting problems can be solved by finding the 

number of ways to select a particular number of elements from a set of a particular size, 

where the order of the elements selected does not matter. For example, in how many 

ways can we select three students from a group of five students to stand in line for a 

picture? How many different committees of three students can be formed from a group 

of four students? In this section we will develop methods to answer questions such as 

these. 

 

1- Permutations 

We begin by solving the first question posed in the introduction to this section, as well 

as related questions. 

EXAMPLE 1 In how many ways can we select three students from a group of five 

students to stand in line for a picture? In how many ways can we arrange all five of 

these students in a line for a picture? 

Solution: First, note that the order in which we select the students matters. There are 

five ways to select the first student to stand at the start of the line. Once this student has 

been selected, there are four ways to select the second student in the line. After the first 

and second students have been selected, there are three ways to select the third student 

in the line. By the product rule, there are 5 · 4 · 3 = 60 ways to select three students 

from a group of five students to stand in line for a picture. 
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To arrange all five students in a line for a picture, we select the first student in five 

ways, the second in four ways, the third in three ways, the fourth in two ways, and the 

fifth in one way. Consequently, there are 5 · 4 · 3 · 2 · 1 = 120 ways to arrange all five 

students in a line for a picture. 

 

Example 1 illustrates how ordered arrangements of distinct objects can be counted. This 

leads to some terminology. 

A permutation of a set of distinct objects is an ordered arrangement of these objects. 

We also are interested in ordered arrangements of some of the elements of a set. An 

ordered arrangement of r elements of a set is called an r-permutation. 

EXAMPLE 2 Let S = {1, 2, 3}.The ordered arrangement 3, 1, 2 is a permutation of S. 

The ordered arrangement 3, 2 is a 2-permutation of S. 

 

The number of r-permutations of a set with n elements is denoted by P(n, r). We can 

find P(n, r) using the product rule. 

 

EXAMPLE 3 Let S = {a, b, c}. The 2-permutations of S are the ordered arrangements 

a, b; a, c; b, a; b, c; c, a; and c, b. Consequently, there are six 2-permutations of this set 

with three elements. There are always six 2-permutations of a set with three elements. 

There are three ways to choose the first element of the arrangement. There are two ways 

to choose the second element of the arrangement, because it must be different from the 

first element. Hence, by the product rule, we see that P(3, 2) = 3 · 2 = 6. the first 

element. By the product rule, it follows that P(3, 2) = 3 · 2 = 6. 

We now use the product rule to find a formula for P(n, r) whenever n and r are positive 

integers with 1 ≤ r ≤ n. 
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EXAMPLE 4 How many ways are there to select a first-prize winner, a second-prize 

winner, and a third-prize winner from 100 different people who have entered a contest? 

Solution: Because it matters which person wins which prize, the number of ways to 

pick the three prize winners is the number of ordered selections of three elements from 

a set of 100 elements, that is, the number of 3-permutations of a set of 100 elements. 

Consequently, the answer is 

P(100, 3) = 100 · 99 · 98 = 970,200. 

EXAMPLE 5 Suppose that a saleswoman has to visit eight different cities. She must 

begin her trip in a specified city, but she can visit the other seven cities in any order she 

wishes. How many possible orders can the saleswoman use when visiting these cities? 

Solution: The number of possible paths between the cities is the number of 

permutations of seven elements, because the first city is determined, but the remaining 

seven can be ordered arbitrarily. Consequently, there are 7! = 7 · 6 · 5 · 4 · 3 · 2 · 1 = 

5040 ways for the saleswoman to choose her tour. If, for instance, the saleswoman 

wishes to find the path between the cities with minimum distance, and she computes the 

total distance for each possible path, she must consider a total of 5040 paths! 
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EXAMPLE 6 How many permutations of the letters ABCDEFGH contain the string 

ABC ? 

Solution: Because the letters ABC must occur as a block, we can find the answer by 

finding the number of permutations of six objects, namely, the block ABC and the 

individual letters D, E, F, G, and H. Because these six objects can occur in any order, 

there are 6! = 720 permutations of the letters ABCDEFGH in which ABC occurs as a 

block. 

 

2- Combinations 

We now turn our attention to counting unordered selections of objects. We begin by 

solving a question posed in the introduction to this section. 

 

EXAMPLE 7 How many different committees of three students can be formed from a 

group of four students? 

Solution: To answer this question, we need only find the number of subsets with three 

elements from the set containing the four students. We see that there are four such 

subsets, one for each of the four students, because choosing three students is the same 

as choosing one of the four students to leave out of the group. This means that there are 

four ways to choose the three students for the committee, where the order in which 

these students are chosen does not matter. 

 

Example 8 illustrates that many counting problems can be solved by finding the number 

of subsets of a particular size of a set with n elements, where n is a positive integer. 

An r-combination of elements of a set is an unordered selection of r elements from the 

set. 

Thus, an r-combination is simply a subset of the set with r elements. 
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EXAMPLE 8 Let S be the set {1, 2, 3, 4}. Then {1, 3, 4} is a 3-combination from S. 

(Note that {4, 1, 3} is the same 3-combination as {1, 3, 4}, because the order in which 

the elements of a set are listed does not matter.) 

The number of r-combinations of a set with n distinct elements is denoted by C(n, r).  

 

EXAMPLE 9 We see that C(4, 2) = 6, because the 2-combinations of {a, b, c, d} are 

the six subsets {a, b}, {a, c}, {a, d}, {b, c}, {b, d}, and {c, d}. 

 

We can determine the number of r-combinations of a set with n elements using the 

formula for the number of r-permutations of a set. To do this, note that the r-

permutations of a set can be obtained by first forming r-combinations and then ordering 

the elements in these combinations. 

 

 

EXAMPLE 10 How many ways are there to select five players from a 10-member 

tennis team to make a trip to a match at another school? 

Solution: The answer is given by the number of 5-combinations of a set with 10 

elements. By Theorem 2, the number of such combinations is 

C(10, 5) = 
   

     
 = 252. 

 

EXAMPLE 11 How many bit strings of length n contain exactly r 1s? 

Solution: The positions of r 1s in a bit string of length n form an r-combination of the 

set {1, 2, 3, . . . , n}. Hence, there are C(n, r) bit strings of length n that contain exactly r 

1s. 
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EXAMPLE 12 Suppose that there are 9 faculty members in the mathematics 

department and 11 in the computer science department. How many ways are there to 

select a committee to develop a discrete mathematics course at a school if the 

committee is to consist of three faculty members from the mathematics department and 

four from the computer science department? 

Solution: By the product rule, the answer is the product of the number of 3-

combinations of a set with nine elements and the number of 4-combinations of a set 

with 11 elements. By Theorem 2, the number of ways to select the committee is 

C(9, 3) · C(11, 4) = 
  

     
 · 

   

     
 = 84 · 330 = 27,720. 
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Binomial Coefficients and Identities 

The number of r-combinations from a set with n elements is also denoted by ( 
 
) in 

addition to C(n, r). This number is also called a binomial coefficient because these 

numbers occur as coefficients in the expansion of powers of binomial expressions such 

as (a + b)
n
. 

The Binomial Theorem 

The binomial theorem gives the coefficients of the expansion of powers of binomial 

expressions. 

A binomial expression is simply the sum of two terms, such as x + y. 

Example 1 illustrates how the coefficients in a typical expansion can be found and 

prepares us for the statement of the binomial theorem. 

 

EXAMPLE 1 The expansion of (x + y)
3
 can be found using combinatorial reasoning 

instead of multiplying the three terms out. When (x + y)
3
 = (x + y)(x + y)(x + y) is 

expanded, all products of a term in the first sum, a term in the second sum, and a term 

in the third sum are added. Terms of the form x
3
, x

2
y, xy

2
, and y

3
 arise. To obtain a term 

of the form x
3
, an x must be chosen in each of the sums, and this can be done in only 

one way. Thus, the x
3
 term in the product has a coefficient of 1. To obtain a term of the 

form x
2
y, an x must be chosen in two of the three sums (and consequently a y in the 

other sum). Hence, the number of such terms is the number of 2-combinations of three 

objects, namely, ( 
 
). Similarly, the number of terms of the form xy

2
 is the number of 

ways to pick one of the three sums to obtain an x (and consequently take a y from each 

of the other two sums). This can be done in ( 
 
)ways. Finally, the only way to obtain a 

y
3
 term is to choose the y for each of the three sums in the product, and this can be done 

in exactly one way. Consequently, it follows that 
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(x + y)
3
 = (x + y)(x + y)(x + y) = (xx + xy + yx + yy)(x + y) 

= xxx + xxy + xyx + xyy + yxx + yxy + yyx + yyy 

= x
3
 + 3x

2
y + 3xy

2
 + y

3
. 

 

EXAMPLE 2 What is the expansion of (x + y)
4
? 

Solution: From the binomial theorem it follows that 
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Consequently, the coefficient of x
12

y
13

 in the expansion is obtained when j = 13, 

namely, 

 

We can prove some useful identities using the binomial theorem, as Corollaries 1, 2, 

and 3 demonstrate. 
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Pascal’s Identity and Triangle 

The binomial coefficients satisfy many different identities. We introduce one of the 

most important of these now. 

Pascal’s identity is the basis for a geometric arrangement of the binomial coefficients in 

a triangle, as shown in Figure 1. 

The nth row in the triangle consists of the binomial coefficients 

 

 

 

This triangle is known as Pascal’s triangle. Pascal’s identity shows that when two 

adjacent binomial coefficients in this triangle are added, the binomial coefficient in the 

next row between these two coefficients is produced. 
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Permutations with Repetition 

Counting permutations when repetition of elements is allowed can easily be done using 

the product rule, as Example 1 shows. 

EXAMPLE 1 How many strings of length r can be formed from the uppercase letters 

of the English alphabet? 

Solution: By the product rule, because there are 26 uppercase English letters, and 

because each letter can be used repeatedly, we see that there are 26
r
 strings of uppercase 

English letters of length r. 

 

Proof: There are n ways to select an element of the set for each of the r positions in the 

r-permutation when repetition is allowed, because for each choice all n objects are 

available. Hence, by the product rule there are n
r
 r-permutations when repetition is 

allowed. 

 

Combinations with Repetition 

Consider these examples of combinations with repetition of elements allowed. 

EXAMPLE 2 How many ways are there to select four pieces of fruit from a bowl 

containing apples, oranges, and pears if the order in which the pieces are selected does 

not matter, only the type of fruit and not the individual piece matters, and there are at 

least four pieces of each type of fruit in the bowl? 

Solution: To solve this problem we list all the ways possible to select the fruit. There 

are 15 ways: 
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The solution is the number of 4-combinations with repetition allowed from a three-

element set, {apple, orange, pear}. 

To solve more complex counting problems of this type, we need a general method for 

counting the r-combinations of an n-element set. In Example 3 we will illustrate such a 

method. 

EXAMPLE 3 How many ways are there to select five bills from a cash box containing 

$1 bills, $2 bills, $5 bills, $10 bills, $20 bills, $50 bills, and $100 bills? Assume that the 

order in which the bills are chosen does not matter, that the bills of each denomination 

are indistinguishable, and that there are at least five bills of each type. 

Solution: Because the order in which the bills are selected does not matter and seven 

different types of bills can be selected as many as five times, this problem involves 

counting 5-combinations with repetition allowed from a set with seven elements. 

Listing all possibilities would be tedious, because there are a large number of solutions. 

Instead, we will illustrate the use of a technique for counting combinations with 

repetition allowed. 

Suppose that a cash box has seven compartments, one to hold each type of bill, as 

illustrated in Figure 1. These compartments are separated by six dividers, as shown in 

the picture. The choice of five bills corresponds to placing five markers in the 

compartments holding different types of bills. Figure 2 illustrates this correspondence 

for three different ways to select five bills, where the six dividers are represented by 

bars and the five bills by stars. 
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The number of ways to select five bills corresponds to the number of ways to arrange 

six bars and five stars in a row with a total of 11 positions. Consequently, the number of 

ways to select the five bills is the number of ways to select the positions of the five stars 

from the 11 positions. This corresponds to the number of unordered selections of 5 

objects from a set of 11 objects, which can be done in C(11, 5) ways. Consequently, 

there are 

 

ways to choose five bills from the cash box with seven types of bills. 
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EXAMPLE 4 Suppose that a cookie shop has four different kinds of cookies. How 

many different ways can six cookies be chosen? Assume that only the type of cookie, 

and not the individual cookies or the order in which they are chosen, matters. 

Solution: The number of ways to choose six cookies is the number of 6-combinations 

of a set with four elements. From Theorem 2 this equals C(4 + 6 − 1, 6) = C(9, 6). 

Because 

 

there are 84 different ways to choose the six cookies. 

 

Table 1 lists the permutation and combination formulas with and without repetition. 
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